Introduction to Digital communications

olivier.michel@grenoble-inp.fr

ENSE3 Grenoble-INP, France

2009

Typical communication media

twisted pair wire	$(e.g., telephone_A)$	
coaxial cable	(e.g., $TV_{A,D}$, $data_D$)	
fiber optic cable	(e.g., ethernet _D)	
EM waves	(e.g., cellular phones _{A,D} , WiFi _D , $TV_{A,D}$)	
water waves	(e.g., underwater network _{A,D})	
power $lines_{A,D}$		
compact disc_D		
hard drive _D		
magnetic tape_{A,D}		

Analog Communications

CSQ :

Perfect recovery in the presence of noise is not possible

Digital communications

Shannon theory / coding, redundancy = perfect transmission is possible, at finite SNR.

Modulator : from a 'baseband' or lowpass signal, to a 'passband' signal

widely used freq. ranges

system	transmission band	$\lambda/10$
VHF (TV)	30–300 MHz	1–0.1 m
UHF (TV)	0.3–3 GHz	10–1 cm
cellular	824–960 MHz	$3~{ m cm}$
WiFi	2.4 GHz	$1 \mathrm{~cm}$

Mapper example

bits	symbol	letter	ASCII code				symbol sequence			
00	3	a	01	10	00	01	-1	1	-3	-1
01	01 -1	b	01	10	00	10	-1	1	-3	1
01	1	c	01	10	00	11	-1	1	-3	3
10	1	d	01	10	01	00	-1	1	-1	-3
11	-3	:	:				:			

Linear modulator example

a[n] = 1, 3, -1, 1, 3... -> ISI, synchronisation, channel response.....

Intersymbol Interference : problem, constraints

Two facts:

- Perfection ($g(t)=\delta_0$) means infinite bandwidth
- Requirement for zero ISI : $g_k = \delta_k$
- The aim:

INPG TST 3

Perfect discrete channel based on perfect finite bandwidth channel

$$g(t)\sum \delta(t-kT) = \delta(t) \leftrightarrow G(\nu) * \frac{1}{T}\sum \delta(\nu - \frac{k}{T}) = 1 \longrightarrow \frac{1}{T}\sum G(\nu - \frac{k}{T}) = 1$$
Nyquist criterion
$$-\frac{1}{2T} \qquad J.k + \frac{1}{2T}e^{r-LIS}$$

6

Ideal sinc solution

Accounting for the (linear) channel dispersion (next sections)

where $(h_1 \star h_2)(t) = h(t)$ must satisfy Nyquist criterion !

Linear model of signal propagation

Dispersion (phase distorsion), selective attenuation, multipath noise = electronic, multi-access interference, co-channel interference....

w(n) is Additive, white, Gaussian (AWGN)

Selective filtering for SNR improvment

Multipath filter model (no fading)

n_{path}

$$\Rightarrow h(t) = \sum_{n_{path}} \alpha_n \delta(t - \tau_n)$$

Multipath filter model example

Fading scales

- Distance
 - outdoor, indoor

 $1/d^n$ with $n \approx 3$ (indoor) $n \approx 4$ (outdoor)

- Slow fading
 - Log-normal
 6-10dB, 5 (indoor)-20m (outdoor)
- Fast fading
 - Multipath propagation

Rayleigh model

- Path: cluster a micropaths: $\alpha_p(t) = \rho_p(t)e^{i\phi_p(t)} = \sum \rho_{p,n}(t)e^{i\phi_{p,n}(t)}$
- NLOS (No Line of Sight, urban) : CLT:
- $\Re e \left[\alpha_p(t) \right]$ and $\Im m \left[\alpha_p(t) \right]$ are uncorrelated gaussian with variance $\sigma_{\alpha_n}^2$
- The module $\rho_p(t)$ is Rayleigh :

$$p(\rho) = rac{
ho}{\sigma_{lpha}^2} exp\left(-rac{
ho^2}{2\sigma_{lpha}^2}
ight) \mbox{ for }
ho > 0$$

• The phase $\phi_p(t)$ is uniform over $[0, 2\pi)$

Real Bandpass signals, bandwidth

physical constraints

$$\Delta t \Delta \nu \geq \frac{1}{4\pi}$$

=> Small T implies large freq!

BUT Digital Comm. : seeks for narrow pulses and small freq. bandwidth !!!

Physical 'Dirac' pulse

Fourier spectrum of a periodic deterministic signal

Square-wave example:

Fourier spectrum of a random noise (estd)

Noise-wave example

LTI systems

LTI in frequency domain

$$X(f) \rightarrow H(f) \rightarrow Y(f) \qquad Y(f) = H(f)X(f)$$

Examples

Ideal LPF :

Ideal delayed LPF :

$$H(f) = \begin{cases} e^{-j2\pi f t_0} & |f| \le B \\ 0 & |f| > B \end{cases} \xrightarrow{\mathcal{F}} h(t) = 2B \operatorname{sinc} \left(2B(t-t_0)\right)$$
$$\underbrace{1^{|H(f)|}}_{-B & 0 & B} f \xrightarrow{2B & h(t)}_{t_0} \underbrace{1^{\frac{1}{2B}}}_{t_0} t$$

Real causal linear phase LPF, with group delay t_0

We can do better : see linear phase FIR filter design...(last year lecture)

filtering noise :

 $S_y(\nu) = |H(\nu)|^2 S_x(\nu)$

Introduction to Digital communications

- Notations, reminder, math tools

Complex baseband : motivations and tools

A briel review of AM modulation AM with suppressed carrier :

$$\begin{array}{ccc} m(t) & \bullet & \otimes \\ & \bullet & & s(t) \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

 $A \left[M(f) \right]$

Rk : if m(t) is real, AM transmitted spectrum is redundant : motivation for QAM !

Demodulation (if trivial channel, and f_c is known, and perfect synchro is assessed)

$$r(t) \xrightarrow{} \underbrace{\mathsf{LPF}}_{2\cos(2\pi f_c t)} v(t) = \mathsf{LPF}\{r(t) \cdot 2\cos(2\pi f_c t)\}.$$

- Notations, reminder, math tools

Complex baseband : motivations and tools

continued...

LPF has passband cutoff freq B_p , stopband cutoff B_s s.t. $B_p \le W$ and $B_s < 2f_c - W$:

When the receiver local oscillator has freq. and phase offset $\{\delta f; \delta \phi\}$, then

$$v(t) = m(t)\cos(2\pi\delta ft + \delta\phi)$$

(time varying attenuation : left as exercice)

- Notations, reminder, math tools

Complex baseband : motivations and tools

AM whith carrier

 $s(t) = (m(t) + A)\cos(2\pi f_c t)$

modern systems : $A \ll max(m(t))$ Large carrier AM : A > max(m(t)), allow enveloppe detection based receivers.

Rk : Carrier - AM transmitted spectrum is redundant, consumes energy (carrier)

Introduction to Digital communications

- Notations, reminder, math tools

Rice representation of deterministic signals

Hilbert transform

$$\mathcal{H}(\nu) = -j.sign(\nu)$$

Analytic transform of x

$$z_x(t) = x(t) + j \mathcal{H}[x](t)$$

- Notations, reminder, math tools

Rice representation of deterministic signals

Complex enveloppe

Rk: x(t) real signal, but $z_x(t)$, $a_x(t)$ complex-valued signals.

- Notations, reminder, math tools

Rice representation of deterministic signals

Consequences of previous definitions

$$\mathcal{H}[x](t) \in \mathbb{R}, x(t) \in \mathbb{R} \Rightarrow x(t) = Re[z_x(t)]$$

and

 $\begin{aligned} x(t) &= Re[a_x(t)e^{j2\pi\nu_0 t}] \qquad \mathcal{H}[x](t) = Im[a_x(t)e^{j2\pi\nu_0 t}] \\ \text{As } a_x(t) &\in \mathbf{C} \Rightarrow \qquad a_x(t) = p_x(t) + j.q_x(t) \\ x(t) &= p_x(t)\cos(2\pi\nu_0 t) - j.q_x(t)\sin(2\pi\nu_0 t) \\ \mathcal{H}[x](t) &= p_x(t)\sin(2\pi\nu_0 t) + j.q_x(t)\cos(2\pi\nu_0 t) \\ \end{aligned}$ $\begin{aligned} "a_x(t) &: \text{Baseband equivalent signal, relative to } \nu_0" \end{aligned}$

-Notations, reminder, math tools

Rice representation of deterministic signals

alternate formulation

$$\begin{bmatrix} x(t) \\ \mathcal{H}[x](t) \end{bmatrix} = \begin{bmatrix} \cos \omega_0 t & -\sin \omega_0 t \\ \sin \omega_0 t & \cos \omega_0 t \end{bmatrix} \begin{bmatrix} p_x(t) \\ q_x(t) \end{bmatrix}$$
$$\begin{bmatrix} p_x(t) \\ q_x(t) \end{bmatrix} = \begin{bmatrix} \cos \omega_0 t & \sin \omega_0 t \\ -\sin \omega_0 t & \cos \omega_0 t \end{bmatrix} \begin{bmatrix} x(t) \\ \mathcal{H}[x](t) \end{bmatrix}$$

thus

-Notations, reminder, math tools

Rice representation of deterministic signals

Bedrossian's theorem

Let
$$f(t), g(t)$$
 such that :

•
$$F(\nu).G(\nu) = 0 \quad \forall \nu$$

• $\begin{cases} f(t) \text{ is } LF(\Delta F) \\ g(t) \text{ is } HF \end{cases}$ such that $min[G(\nu)] >> 2\Delta F$

then

 $\mathcal{H}[f.g](t) = f(t).\mathcal{H}[g](t)$

Introduction to Digital communications

-Notations, reminder, math tools

Rice representation of deterministic signals

Example

Let
$$x(t) = m(t)\cos(2\pi\nu_0 t + \phi)$$
, with $\Delta M(\nu) \ll \nu_0$

The complex enveloppe (relatively to ν_0) of x is

$$a_x(t) = m(t) e^{j\phi}$$

Introduction to Digital communications -Lecture 2-

- Notations, reminder, math tools

Rice representation of deterministic signals

Introduction to Digital communications -Lecture 2-

olivier.michel@grenoble-inp.fr

ENSE3 Grenoble-INP, France

2009
Bedrossian's theorem

Let
$$f(t), g(t)$$
 such that :
F(ν). $G(\nu) = 0 \quad \forall \nu$
 $\begin{cases} f(t) \text{ is } LF(\Delta F) \\ g(t) \text{ is } HF \end{cases}$ such that $min[G(\nu)] >> 2\Delta F$
then

$$\mathcal{H}[f.g](t) = f(t).\mathcal{H}[g](t)$$

Example

Let
$$x(t) = m(t)\cos(2\pi\nu_0 t + \phi)$$
, with $\Delta M(\nu) \ll \nu_0$

The complex envelope (relatively to ν_0) of x is

$$a_x(t) = m(t)e^{j\phi}$$

Actually for e.g. AM, transmitted signal is $x(t) = m(t)\cos(2\pi\nu_0 t + \phi) = m(t)\cos(\phi)\cos(2\pi\nu_0 t) - m(t)\sin(\phi)\sin(2\pi\nu_0 t).$

As $\mathcal{H}[\cos(2\pi\nu_0 t + \phi)] = \sin(2\pi\nu_0 t + \phi)$, it comes $z_x(t) = e^{2\pi\nu_0 t + \phi}$, the complex envelope is $a_x(t)$, and

$$\begin{cases} m(t)e^{j\phi} = p_x(t) + jq_x(t) \\ x(t) = p_x(t)\cos(2\pi\nu_0 t + \phi) - q_x(t)\sin(2\pi\nu_0 t + \phi) \end{cases}$$

Application to real valued passband signals

Def : x(t) is a deterministic real passband signal if $\exists B \in \mathbb{R}^+$ s.t.

$$\begin{cases} X^{+}(\nu) &= X(\nu) & \text{if } \nu > B \\ X^{-}(\nu) &= X(\nu) & \text{if } \nu < B \\ X^{-}(\nu) = X^{+^{*}}(-\nu) \end{cases}$$

therefore
$$\begin{cases} Z_x(\nu) &= 2X^+(\nu) \\ A_x(\nu) &= 2X^+(\nu+\nu_0) \end{cases}$$

Equalities for real passband signals

Exercice : As $x(t) = p_x(t) \cos(2\pi\nu_0 t) - q_x(t) \sin(2\pi\nu_0 t)$, prove that $\begin{array}{l} X^+(\nu) &= \frac{1}{2} [P_x(\nu - \nu_0) + jQ_x(\nu - \nu_0)] \\ X^-(\nu) &= \frac{1}{2} [P_x(\nu + \nu_0) - jQ_x(\nu + \nu_0)] \end{array}$

•
$$A_x(\nu) = 2X^+(\nu + \nu_0) = P_x(\nu) + jQ_x(\nu)$$

•
$$P_x(\nu) = X^+(\nu+\nu_0) + X^-(\nu-\nu_0)$$

 $Q_x(\nu) = \frac{1}{j}[X^+(\nu+\nu_0) - X^-(\nu-\nu_0)]$

Spectral interpretation, real passband signals -1-

where

$$X_h(\nu) = TF[\mathcal{H}[x(t)](\nu)]$$

Spectral interpretation, real passband signals -2-

 $p_x(t) = x(t)\cos(2\pi\nu_0 t) + x_h(t)\sin(2\pi\nu_0 t)$

Spectral interpretation, real passband signals -3-

 $q_x(t) = -x(t)\sin(2\pi\nu_0 t) + x_h(t)\cos(2\pi\nu_0 t)$

Typical application involving passband signals -1-

Let x(t), y(t) real valued bandpass signals, expressed in terms of their respective in-phase and quadrature components (rel. to ν_0)

$$\begin{cases} x(t) = p_x(t)\cos(2\pi\nu_0 t) - q_x(t)\sin(2\pi\nu_0 t) \\ y(t) = p_y(t)\cos(2\pi\nu_0 t) - q_y(t)\sin(2\pi\nu_0 t) \end{cases}$$

then s(t) = x(t).y(t) $= \frac{1}{2} [p_x(t).p_y(t) + q_x(t).q_y(t)] + \text{ HF terms around } 2\nu_0$

- Application : Complex baseband representation of QAM

Typical application involving passband signals -2- : QAM

Quadrature Amplitude Modulation

where $\begin{cases} v_l(t) = m_l(t) \\ v_Q(t) = m_Q(t) \end{cases}$ if perfect synchronization.

- Application : Complex baseband representation of QAM

Exercice

Replace $2\cos(2\pi\nu_0 t)$ (resp. $\sin()$ by $\cos(2\pi\nu_0 t + \phi)$ to account for lack of phase synchronization. Prove that

$$\begin{cases} v_l(t) &= m_l(t)\cos(\phi) + m_Q(t)\sin(\phi) \\ v_Q(t) &= -m_l(t)\sin(\phi) + m_Q(t)\cos(\phi) \end{cases}$$

Show that $\phi \neq 0$ leads to some coupling between the in-phase and quadrature components, and to attenuation of both.

- Application : Complex baseband representation of QAM

Complex baseband representation of QAM

Writing the complex baseband form

$$\begin{aligned} \tilde{m}(t) &= m_l(t) + jm_Q(t) \\ \tilde{v}(t) &= v_l(t) + jv_Q(t) \end{aligned}$$

yields the much simpler representation of QAM

where if r(t) = s(t), $\tilde{v}(t) = \tilde{m}(t)$

- Rice representation of random processes, baseband filtering

Rice representation of random processes

Let x(t) be a real-valued a second order stationary, zero-mean random process.

$$\begin{cases} z_x(t) &= x(t) + j \mathcal{H}[x](t) \\ a_x(t) &= z_x e^{-2j\pi\nu_0 t} \\ a_x(t) &= p_x(t) + j \mathcal{A}_x(t) = \rho_x(t) e^{j\phi_x(t)} \\ x(t) &= p_x(t) \cos(2\pi\nu_0 t) - q_x(t) \sin(2\pi\nu_0 t) \end{cases}$$

Expressing $R_{xx}(\tau) = E[x(t)x^*(t-\tau)]$ as a function of p_x , q_x , yields

$$x(t) \text{ wide sense stationnary} \Rightarrow \begin{cases} R_{pp}(\tau) = R_{qq}(\tau) \\ R_{pq}(\tau) = -R_{qp}(\tau) = -R_{pq}(-\tau) \\ E[|a_x(t)|^2] = 2R_{pp}(0) \\ E[x(t)] = \operatorname{cst} \Rightarrow R_{pq}(0) = 0 \end{cases}$$

- Rice representation of random processes, baseband filtering

Narrow band random processes

Def : x(t) is wide sense stationary narrowband random process if its PSD $\gamma_x(\nu)$ is narrowband. Let $a_x(t) = p_x(t) + j \cdot q_x(t)$ be the complex envelope of x, relative to ν_0 , then

a(t) is a complex random process, verifying

$$\begin{array}{ll} \gamma_{a}(\nu) &= 4\gamma^{+}(\nu + \nu_{0}) \\ \gamma_{p}(\nu) &= \gamma_{q}(\nu) = \frac{1}{4}[\gamma_{a}(\nu) + \gamma_{a}(-\nu)] \\ \gamma_{pq}(\nu) &= \frac{1}{4j}[\gamma_{a}(-\nu) - \gamma_{a}(\nu)] \end{array}$$

- Rice representation of random processes, baseband filtering

Complex envelope transformation through filtering (narrowband)

$$\begin{array}{ll} Y(\nu) = H(\nu).X(\nu) & \Rightarrow Z_{y}(\nu) = H^{+}(\nu)Z_{x}(\nu) = 2H^{+}(\nu)X^{+}(\nu) \\ A_{x}(\nu) = 2X^{+}(\nu+\nu_{0}) & \Rightarrow 2Z_{y}(\nu+\nu_{0}) = 2H^{+}(\nu+\nu_{0})Z_{x}(\nu+\nu_{0}) \end{array}$$

yielding

$$A_y(\nu) = H^+(\nu + \nu_0)A_x(\nu) = H_{eq}(\nu)A_x(\nu)$$

 $H_{eq}(\nu) \neq A_h(\nu)$ BUT $H_{eq}(\nu) = \frac{1}{2}A_h(\nu)$ $H_{eq}(\nu)$ is LF shifted version of $H(\nu)$, without correcting factor 2!

- Rice representation of random processes, baseband filtering

Time domain filter input-output relations for complex baseband signals

$$\begin{array}{rcl} a_{y}(t) &= [H_{eq} \otimes a_{x}](t) \\ &= \frac{1}{2}[(\rho_{h}+j.q_{h}) \otimes (\rho_{x}+j.q_{x})](t) \\ &= \dots \\ p_{y}(t) &= \frac{1}{2}[\rho_{h} \otimes \rho_{x}](t) - \frac{1}{2}[q_{h} \otimes q_{x}](t) \\ q_{y}(t) &= \frac{1}{2}[q_{h} \otimes \rho_{x}](t) + \frac{1}{2}[\rho_{h} \otimes q_{x}](t) \end{array}$$

- Rice representation of random processes, baseband filtering

Baseband formulation of interference formula

$$egin{array}{lll} \gamma_{a_b} &= 4\gamma_b^+(
u+
u0) = 2N_0 \ \gamma_{a_s} &= |H_{eq}(
u)|^2 2N_0 \end{array}$$

- Rice representation of random processes, baseband filtering

continued

furthermore

$$\begin{array}{ll} \gamma_{\mathcal{P}_{\mathcal{S}}}(\nu) &= \gamma_{q_{\mathcal{S}}}(\nu) = \frac{1}{4}[\gamma_{\mathcal{A}_{\mathcal{S}}} + \gamma_{\mathcal{A}_{\mathcal{S}}}(-\nu)] \\ &= \frac{N_{0}}{2}[|\mathcal{H}_{eq}(\nu)|^{2} + |\mathcal{H}_{eq}(-\nu)|^{2}] \end{array}$$

and

$$\gamma_{pq_s}(\nu) = \frac{N_0}{2j} [|H_{eq}(\nu)|^2 - |H_{eq}(-\nu)|^2]$$

- γ_{pqs}(ν) = 0 if H_{eq}(ν) is symetric (i.e. if H⁺(ν) is symetric around ν₀)
- In-phase and quadrature component have identical variances

$$\sigma^2 = N_0 \int_{-\infty}^{\infty} |H_{eq}(-\nu)|^2 d\nu$$

- Complex baseband equivalent channel (linear modulations)

- Complex baseband equivalent channel (linear modulations)

contd...

as
$$s(t) \otimes h_{bp}(t)$$
] $2e^{-j2\pi f_c t} = [s(t)2e^{-j2\pi f_c t}] \otimes [h_{bp}(t)e^{-j2\pi f_c t}]$:

then reversing the order of the LTI systems :

$$\begin{split} \tilde{m}(t) & \longrightarrow & \\ & &$$

- Complex baseband equivalent channel (linear modulations)

Consequences :

mod/demod are transparent (with synch oscillators) :

$$\tilde{m}(t) \longrightarrow h_{\rm bp}(t) e^{-j2\pi f_c t} \longrightarrow \tilde{v}_s(t)$$

$$H_{eq}(\nu) = \tilde{H}(\nu)!$$

> finally, for the noiseless complex baseband channel :

$$\tilde{m}(t) \longrightarrow \tilde{h}(t) \longrightarrow \tilde{v}_s(t)$$

- Complex baseband equivalent channel (linear modulations)

Noisy channel (additive)

- Complex baseband equivalent channel (linear modulations)

Noisy channel (contd)

- from previous studies on complex baseband random process,
- if noise PSD is CONSTANT ($\frac{N_0}{2}$) over the freq-range of interest,

- Complex baseband equivalent channel (linear modulations)

Summary

- Complex baseband equivalent channel (linear modulations)

Introduction to Digital communications -Lecture 3-

olivier.michel@grenoble-inp.fr

ENSE3 Grenoble-INP, France

2009

L Definitions

Digital modulation definition

Discrete symbols $a_n \in \Omega \rightarrow$ Continuous time series $\tilde{m}(t)$

$$egin{cases} a_n &\simeq a(nT) \ |\Omega| &= M \ rac{1}{T} &= R_s \ \end{array}$$
 "symbol rate"

where

Channel coding : $u_k \leftrightarrow$ sequence of bits therefore

$$R_b = \frac{1}{T} \log_2 M$$
 bits/sec

System

Digital communication system

Transmitter : -pulse shaping :
$$\tilde{m}(t) = \sum_{n} a[n]g(t - nT)$$

-modulation : $s(t) = Re{\tilde{m}(t)e^{j2\pi f_{c}t}}$

 $\begin{array}{l} -\text{demodulation}: \tilde{v} = \text{LPF}\{2r(t)e^{j2\pi f_c t}\}\\ \text{Receiver}: & -\text{filtering}: y(t) = \tilde{v}(t) \otimes q(t)\\ & -\text{sampling}: y[m] = y(mT) \end{array}$

Digital communication system, contd C-baseband :

where for the noiseless channel $g(t)\otimes \tilde{h}(t)\otimes q(t)=p(t)$

verifies NYQUIST ISI supression criterion

Digital modulations

Linear modulations

Linear digital modulations baseband message :

$$\tilde{m}(t) = \sum_{n} a[n]g(t - nT)$$

example for a[n] = [1, 3, -1, 1, 3], with non-realistic g(t):

Power spectral density of linear digital comm. signal

PSD of linear digital comm. signal

$$\widetilde{m}(t) = \sum_{n} a[n]g(t - nT)$$

$$\Gamma_{m}(t,\tau) = E[m(t)m^{*}(t - \tau)]$$

$$= \sum_{k} \sum_{k'} E[a[k]a^{*}[k']]g(t - kT)g^{*}(t - k'T)$$

Assuming that (a[k]) is a wide sense stationary process :

$$E[a[k]a^*[k']] = \Gamma_a(k - k')$$

$$\Rightarrow \Gamma_m(t,\tau) = \sum_l \Gamma_a(l) \sum_k \underbrace{g(t - kT)g^*(t - \tau - (k - l)T)}_{\text{Depends upon both } t \text{ and } \tau !}$$
BUT

 $\Gamma_m(t+T,\tau) = \Gamma_m(t,\tau) \Rightarrow \text{ CYCLOSTATIONARITY}$

Digital modulations

Power spectral density of linear digital comm. signal

PSD of linear digital comm. signal, contd

$$\overline{\Gamma}_m(\tau) = \frac{1}{T} \int_0^T \Gamma_m(t,\tau) dt$$

if $g(t) \in \mathbb{R}$,

$$\overline{\gamma}(f) = \frac{|G(f)|^2}{T} \sum_{I} \Gamma_a(I) \mathrm{e}^{-j2\pi f I T}$$

Letting
$$\begin{cases} m_a = E[a]; & \sigma_a^2 = E[a^2 - E[a]] \\ \tilde{a} = \frac{a - E[a]}{\sigma_a} \end{cases}$$

$$\overline{\gamma}(f) = rac{|G(f)|^2}{T} \sum_{I} \left(\sigma_a^2 \Gamma_{\tilde{a}}(I) + |m_a^2| \right) \mathrm{e}^{-j2\pi f |T|}$$

Power spectral density of linear digital comm. signal

PSD of linear digital comm. signal, contd

As
$$\Gamma_{\tilde{a}}(I) = \Gamma_{\tilde{a}}^{*}(-I)$$
,
 $\overline{\gamma}(f) = 2\sigma_{a}^{2} \frac{|G(f)|^{2}}{T} \sum_{l=1}^{\infty} Re\left(\Gamma_{\tilde{a}}(I)e^{-j2\pi f lT}\right)$ (1)
 $+\sigma_{a}^{2} \frac{|G(f)|^{2}}{T}$ (2)
 $+\frac{|m_{a}^{2}|}{T^{2}} \sum_{k} \left|G(\frac{k}{T})\right|^{2} \delta(f - \frac{k}{T})$ (3)

- ▶ (1)(2) : continuous part of the PSD; (3) : discrete part
- ▶ (3) = 0 if $|m_a| = 0$

•
$$G(0) = 0 \Rightarrow \overline{\gamma}_e(0) = 0$$

► (1) is an ordinary function of *f* if $\Gamma_a(I) \xrightarrow{I \to \infty} 0$ quickly enough

Digital modulations

Pulse shaping

Pulse shaping

General representations of Linear digital modulations

General expression of baseband message :

$$\tilde{m}(t) = \sum_{n} a_{\rho}[n]g_{\rho}(t-nT) + j.a_{q}[n]g_{q}(t-nT)$$

and

$$m(t) = \sum_{n} a_{p}[n]g_{p}(t - nT)\cos(2\pi f_{c}t) - a_{q}[n]g_{q}(t - nT)\sin(2\pi f_{c}t)$$

Example : Pulse Amplitude Modulation (PAM)

 $\tilde{m}(t) = \sum_{n} a_{p}[n]g_{p}(t-nT), \quad a[n] = (2k-1-M), k \in \{1, 2, \dots, M\}$

i.e. $g_p(t) = g(t); g_q(t) = 0$

Pulse shaping

Signal space dimension

<u>Definition</u>: Let $m(t) = \sum_{n} s(t - nT, a_n)$. The dimension *N* of the signal space is the dimension of the real-valued functional space spanned by the signals s(t, a).

- PAM :
$$\tilde{m}(t) = \sum_{n} a[n]g(t - nT)$$
,
where $a[n] \in \mathbb{R}$ and $g(t) \in \mathbb{R} \Rightarrow \tilde{m}(t) \in \mathbb{R}$, thus $N_{PAM} = 1$

- QAM : $\tilde{m}(t) = \sum_{n} g(t - nT)[a_{p}[n] + j.a_{q}[n])$ where $(a_{p}, a_{q}) \in \mathbb{R}^{2}$, and $g(t) \in \mathbb{R} \Rightarrow \tilde{m}(t) \in \mathbf{C}$, thus $N_{QAM} = 2$

Rk : For OFDM or FSK, N > 2

Pulse shaping

Energy

<u>Definition</u> : Let $m(t) = \sum_{n} s(t - nT, a_n)$. The energy requested for transmitting a single symbol is $\mathcal{E}(a) = ||s(a)||^2 (1)$

The average energy spend per symbol is, for $|\Omega| = M$ and uniform probability of all symbols :

$$\mathcal{E}_{s} = rac{1}{M} \sum_{a \in \Omega} \mathcal{E}(a)$$

The average energy per bit is then

$$\mathcal{E}_b = \frac{1}{\log_2(M)} \mathcal{E}_s$$

$$||s(a_n)||^2 = \int_{(n-1)T}^{T} s^2(t, a_n) dt$$

Pulse shaping

Signal space examples

$${}^{2}1^{2}+2^{2}+\ldots+(2n-1)^{2}=\frac{n(2n-1)(2n+1)}{3}$$
Digital modulations

Pulse shaping

PSK :

$$\begin{cases}
\tilde{m}(t) = A \sum_{n} g(t - nT) e^{j\phi(a[n])} \\
m(t) = A \sum_{n} g(t - nT) \cos(2\pi f_c t + \phi(a[n]))
\end{cases}$$

Other modulations

- Differential modulations

Differential modulations

Perfect phase locking of the receiver : impossible

 \blacktriangleright phase rotation in PSK or QAMq \rightarrow errors in symbol detection

 \Rightarrow Encode phase jumps, resulting in rotation invariant modulations

- phase rotation invariance, 'infinite modulation memory' to encode initial phase
- demod : $y_k = e^{j(\phi_k \theta)}, < y_k, y_{k-1} >= e^{j(\phi_k \phi_{k-1})} = e^{ja[k]}$

Example : trellis representation of a Differential Binary PSK (M = 2)

state changes are associated to phase jumps of π .

Other modulations

Differential modulations

Offset modulation

Pb : phase jumps \Rightarrow {freq spread high amplitude fluctuations, out of linear range of HF amplifiers Solution : π phase jumps are not allowed ! Example : Offset QPSK :

$$g_p(t) = g(t - \frac{T}{2}) \quad \text{and } g_q(t) = g(t)$$

$$m(t) = \sum_n a_p(t)g(t - nT - \frac{T}{2}) - a_q(t)q(t - nT)$$

 $\Rightarrow Re(\tilde{m}(t) \text{ and } Im(\tilde{m}(t) \text{ do not change simultaneously})$:

Constant envelope modulation

Motivation : bounding the amplitude fluctuation (to ensure linear range operation of the HF electronic devices) \rightarrow Frequency modulation (FSK) with continuous phase (CPM).

$$FSK: x(t) = \cos\left(2\pi f_c t + 2\pi f_d \int_{-\infty}^t m(\tau) d\tau\right), \ m(\tau) = \sum_n a_n g_d(\tau - nT)$$

Instantaneous frequency : $f_c + f_d m(t)$

FSK example

Let $g_d(t) = \Pi_T(t)$ and $f_d m(t) = a[n] \frac{h}{2T}$

- \Rightarrow phase of **C**-envelope (\tilde{x}) is $\int_{-\infty}^{t} f_d m(\tau) d\tau$ is piecewise linear.
- ► ⇒ if f_d is PAM (as often), then frequencies are separated by $\frac{h}{T}$: h: modulation index of FSK
- ▶ phase jump between 2 consecutives 'symbols' = $0 \rightarrow (f_1 f_2)T$ is $\frac{1}{2}$ -integer (then *h* is $\frac{1}{2}$ integer). where

$$\begin{cases} x(t) = \cos(2\pi \left(f_0 t + \int_{t_0}^t m(\tau) d\tau\right) \\ m(\tau) : \frac{1}{4T} \sum_n a[n]g_d(t - kT), \quad a[n] \in \{-1; +1\} \end{cases}$$

this is Min Shift Keying (MSK) for a BPSK.

Other modulations

└─ FSK

Modulation standard examples

Standard	Modulation type GFSK ³	
DECT		
GSM	GMSK	
UMTS	QPSK	
Modem v34kbit/s	QAM-1664	

 $^{{}^{3}}GMSK = MSK$ where the binary data flow is pre-filtered (before F-modulation), to reduce sideband power.

- Transmission over a noisy (white gaussian) ideal channel

- Performances

Performances

First consider the transmission of a unique symbol : baseband representations of the communication system :

Ideal channel, no ISI
$$\Rightarrow \begin{cases} y_s[m] = \sum_n a[n]p((m-n)T) = a[m]p(0) \\ p(0) = \int_{-\infty}^{\infty} q(\tau)g(-\tau)d\tau \\ \mathcal{E}_s = \mathrm{E}[|y_s[m]|^2] = \sigma_a^2 p(0)^2 \end{cases}$$

Transmission over a noisy (white gaussian) ideal channel

- Performances

Performances, contd

as
$$y_n[m] = y_n(mT) = \int_{-\infty}^{\infty} q(\tau) \tilde{w}(mT - \tau) d\tau$$
,
 $\mathcal{E}_n = \mathrm{E}[|y_n[m]|^2] = N_0 \int_{-\infty}^{\infty} |q(\tau)|^2 d\tau$

Then, the pdf of the observation is

$$f(\boldsymbol{y}[\boldsymbol{m}]|\boldsymbol{a}[\boldsymbol{m}]) = \frac{1}{\sqrt{2\pi\mathcal{E}_n}} e^{-\frac{(\boldsymbol{y}[\boldsymbol{m}]-\boldsymbol{a}(\boldsymbol{m})\boldsymbol{\rho}(\boldsymbol{0}))^2}{2\mathcal{E}_n}}$$

Transmission over a noisy (white gaussian) ideal channel

- Performances

Performances, contd

Considering e.g. PAM2 : $a[m] \in \{-1, +1\}$, and a simple threshold detector (threshold η)

$$\begin{cases} P_{FA} = \Pr(y[m] > \eta | a[m] = -1) = \int_{\eta}^{\infty} f(y | a = -1) dy \\ P_{M} = \Pr(y[m] < \eta | a[m] = +1) = \int_{-\infty}^{\eta} f(y | a = +1) dy \end{cases}$$

Letting $\operatorname{erf}(x) = \frac{1}{\sqrt{x}} \int_0^x e^{-t^2} dt$,

$$\begin{cases} P_{FA}(\eta) = \frac{1}{2} - \frac{1}{2} \operatorname{erf}\left(\frac{\eta + p(0)}{\sqrt{2\mathcal{E}_n}}\right) \\ P_M(\eta) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\eta - p(0)}{\sqrt{2\mathcal{E}_n}}\right) \end{cases} \end{cases}$$

and

$$P_{err}(\eta) = \Pr(a[m] = -1)P_{FA}(\eta) + \Pr(a[m] = +1)P_{M}(\eta)$$

Transmission over a noisy (white gaussian) ideal channel

- Performances

Performances, contd

 $P_{err}(\eta) = \Pr(a[m] = -1)P_{FA} + \Pr(a[m] = +1)P_M \Rightarrow \text{choosing } \eta \text{ to}$ minize P_{err} ?

$$rac{\partial \textit{P}_{\textit{err}}}{\partial \eta} = \mathbf{0} \Rightarrow \eta_{\textit{opt}} = rac{\mathcal{E}_n}{2p(0)} \log\left(rac{p_0}{p_1}
ight)$$

where $p_0 = Pr(a[m] = -1)$ and $p_1 = Pr(a[m] = +1)$

Transmission over a noisy (white gaussian) ideal channel

- Performances

L

Optimizing the receiver (ideal channel)

et
$$\rho = \frac{\rho(0)}{\sqrt{2\mathcal{E}_n}} \simeq \text{SNR}$$
, and let $k = \frac{1}{4} \log\left(\frac{p_0}{\rho_1}\right)$
then
 $P_{err}(\eta_{opt}) = \frac{p_0}{2} \operatorname{erfc}(\rho + \frac{k}{\rho}) + \frac{p_1}{2} \operatorname{erfc}(\rho - \frac{k}{\rho})$

As minimizing $P_{err} \Leftrightarrow$ maximizing ρ , and reexprssing ρ :

$$\rho = \frac{p(0)}{\sqrt{2\mathcal{E}_n}} \propto \frac{\int_{-\infty}^{\infty} q(\tau)g(-\tau)d\tau}{\sqrt{N_0} \left[\int_{-\infty}^{\infty} |q(\tau)|^2 d\tau\right]^{\frac{1}{2}}}$$

By Cauchy-Schwartz inequality, ρ is maximum if $\exists \lambda$ such that

$$q(t) = \lambda g^*(-t)$$

Transmission over a noisy (white gaussian) ideal channel

- Performances

Optimizing the receiver (contd)

 $q(t) = \lambda g^*(-t)$: MATCHED FILTER EQUATION Then by properly choosing λ ,

$$\rho_{opt} = \sqrt{\frac{E_g}{N_0}}$$

and if $p_0 = p_1$ (then k = 0),

$$P_{err} = rac{1}{2} \mathrm{erfc} \left(\sqrt{rac{E_g}{N_0}}
ight)$$

finally for Best performance of the ISI free channel :

-G(f)Q(f) = P(f) must satisfy the Nyquist criterion $-Q(f) = G * (f)e^{j2\pi ft_0}$

Transmission over a noisy (white gaussian) ideal channel

- Performances

Optimizing the receiver (contd)

From preceding equation :

 $|G(f)|^2$ must satisfy the Nyquist criterion. One option is

$$G(f) = \sqrt{P_{rc}(f)}$$

as $P_{rc}(f)$, the raised cosine filter, is Nyquist. The 'square-root raised cosine pulse' is

$$g_{srrc}(t) = \frac{(1-\alpha)\operatorname{sinc}(\frac{t}{T}(1-\alpha))}{1-(4\alpha\frac{t}{T})^2} + \frac{4\alpha \operatorname{cos}(\pi\frac{t}{T}(1+\alpha))}{\pi(1-(4\alpha\frac{t}{T})^2)}$$

Transmission over a noisy (white gaussian) ideal channel

- Performances

Introduction to Digital communications -Lecture 4-

olivier.michel@grenoble-inp.fr

ENSE3 Grenoble-INP, France

2009

Baseband communications : real channel

Real (linear) channel

Real channel, facts :

- ► Channel impulse response $\neq \delta(t \tau)$ (*Except on restricted band* : case of multiuser freq. multiplexing)
- ► Baseband signal PSD has infinite freq. support ⇒ multi-user interferences : coder output MUST be filtered.
- ► Physical channel introduces attenuation, dispersin; e.g. coax. cable or paired wires (√f attenuation).
- Channel selectivity, dur to multiple paths ... (for modulations with carriers)

Baseband communications : real channel

Real (linear) channel

No ISI condition :

Accounting for the (linear) channel dispersion :

where

 $(h_1 \star h_2)(t) = h(t)$ must satisfy Nyquist criterion :

$$h(t)\sum_{k}\delta(t-kT) = \delta(t) \quad \Leftrightarrow H(\nu) \otimes \frac{1}{T}\sum_{k}\delta(\nu-\frac{k}{T}) = 1$$
$$\Leftrightarrow \frac{1}{T}\sum_{k}H(\nu-\frac{k}{T}) = 1$$

- This warrant the existence of a unique t₀ over each time interval T
- ► In general : $y(t_0 + nT) = a_n r(t_0) + \sum_{k' \neq 0} a_{n-k'} r(t_0 + k'T) + w(t_0 + nT)$ where (n - k) = k', $r(t_0) = g \otimes h_1 \otimes h_2(t)$

$$\blacktriangleright \sum_{k'\neq 0} a_{n-k'} r(t_0 + k'T) = \mathsf{ISITERM}$$

Baseband communications : real channel

EYE Diagram

$$z(t)=\sum_m r(t-mT)$$

Definition : Eye diagram : set of all possible trajectories of z(t) over a time interval T

Csq : if $r(t) \neq O$ over $[t_0 - L_1T, t_0 + L_2T]$, then $\exists (L_1 + L_2 + 1)$ different sample segments of z(t)

4

(No ISI here

Baseband communications : real channel

EYE Diagram

EYE Diagram, contd

- if r(t) satisfies Nyquist criterion, not r(t) + w(t).
- Underlying hypothesis of perfectly synchronized system doest not generally hold
- In general, Nyquist criterion is not strictly met

Consequences :

As the eye "closes," decisions get more unreliable:

Baseband communications : real channel

EYE Diagram

EYE Diagram, contd

The eye diagram accounts for ALL possible segments of $z(t) \Rightarrow$ it is T-periodic Important remarks :

- ► The eye diagram accounts for ALL possible segments of z(t) ⇒ it is T-periodic
- Satisfying Nyquist criterion IMPOSES

Freq support $(R(\nu)) \geq \frac{1}{T}$

"One cannot send a sequence of symbol at a rate of $\frac{1}{T}$ over a frequency bandwith smaller than $\frac{1}{T}$ "

Baseband communications : real channel

EYE Diagram

EYE Diagram, contd

Example for the square root raised cosine (r(t)):

Baseband communications : real channel

Constellations

Constellation diagrams

This is the plot Im[y(n)] vs Re[y(n)] for many integers *n*. (Reminder : y(n) is the complex baseband representation of the received signal, $a(n) \in \mathbf{C}$)

if everything works well, eq for QAM16 or PAM4 :

Baseband communications : real channel

Constellations

Constellation diagrams, contd

Complex trajectory of the received signal : This is the plot Im[y(t)] vs Re[y(t)] for all possible sequences (here QAM16, SRRC)

Baseband communications : real channel

Making decision at the receiver

Decision regions

Remind the most popular modulations , and associated variance (uniform proba over the alphabet)

alphabet	M^2 -QAM	M-PAM	M-PSK
$\sigma_a{}^2$	$\frac{\Delta^2}{6} \left(M^2 - 1 \right)$	$\frac{\Delta^2}{12} \left(M^2 - 1 \right)$	$\frac{\Delta^2}{4sin^2(\pi/M)}$

Baseband communications : real channel

Making decision at the receiver

Decision regions

Decision rule (DR) :

$$y(n) \xrightarrow{\text{Nearest Neighbor mapping}} a(n) \in \Omega$$

Consequence :

Decision regions = Voronoi diagram of the constellation.

▶ Definition : Symbol Error Rate (SER) : Proba[DR[Y(n)] ≠ a|a(n) = a]

▶ for M-PAM, and gaussian noise (zero-mean, σ_n^2)

$$SER_{M_PAM} = \left(\frac{M-1}{M}\right) \operatorname{erfc}\left(\sqrt{\frac{3\sigma_a^2}{2(M^2-1)\sigma_n^2}}\right)$$

- Baseband communications : real channel

Making decision at the receiver

Decision regions, contd

- ▶ SER for *M*²-QAM, circular white gaussian noise (zero-mean, σ_n^2)
 - additive noise variance $\frac{\sigma_n^2}{2}$ on Im[r] and on Re[r]
 - integration on C-plane
 - ▶ 4 corner points, 4(M-2) edge points, $M^2 4M + 4$ interior points.

calculate Proba[Error|a[n] = a] = 1 - Proba[correct|a[n] = a],(simpler).

$$SER_{M^2-QAM} = 1 - \left[1 - \frac{(M-1)}{M} \operatorname{erfc}\left(\sqrt{\frac{3\sigma_a^2}{2(M^2-1)\sigma_n^2}}\right)\right]^2$$

Baseband communications : real channel

Making decision at the receiver

SER and Bit Error Rate : Gray coding

if $|\Omega| = M$ 1 symbol error causes potentially *M* bit errors! Gray coding allow to impose BER \simeq SER

- Diversity coding : spread spectrum methods

Motivations, goals

Originally :

- Provide robustness wrt jamers (military or secured communications)
- Lower probability of interception by lowering PSD of emitted signals

Modern applications :

- Robustness wrt echoes (multipaths), multi-users interferences
- CDMA, FDMA

Diversity coding : spread spectrum methods

Spread spectrum technique overview

Spread spectrum

"Spread spectrum is a means of transmission in which the signal occupies a bandwidth in excess of the minimum necessary to send the information; the band spread is accomplished by means of a code which is independent of the data, and a synchronized reception with the code at the receiver is used for despreading and subsequent data recovery". [1]

R.L. Pickholtz, D.L. Schilling a. L.B. Milstein, "Theory of Spread-Spectrum Communications-A Tutorial", IEEE Transactions on Communications, vol. Com30, no. 5, May 1982, pp. 855-884

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

DSSS principle

Increasing artificially the data rate \Leftrightarrow spreading the spectrum

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

DSSS principle

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

DSSS principle

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

FHSS principle

PN generator drives instantaneous frequency :

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

Main types of DSSS and FHSS

Definition :

Spreading Factor =
$$\frac{W_{ss}}{W_d} = \frac{R_c}{R_d} = SF$$

Where $W = \text{bandwidth}, R_c = \text{Chip rate}, R_d = \text{symbol rate}$

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

DSSS : despreading

Correct decoder PN sequence

Different decoder PN sequence

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

Effect of a synchronization lag in the PN Code at the

receiver

Diversity coding : spread spectrum methods

Direct Sequence Spread spectrum

Effect of a DSSS and white gaussian additive noise

Diversity coding : spread spectrum methods

Interference rejection, multipath channels

Interference rejection

Assume the interferer has constant PSD Io over its bandwidth Winterf :

- Diversity coding : spread spectrum methods

Interference rejection, multipath channels

Various Distorsions through SS transmitter systems

Diversity coding : spread spectrum methods

Interference rejection, multipath channels

SS summary

Diversity coding : spread spectrum methods

Interference rejection, multipath channels

Summary of SS methods benefits

- Interference rejection (immunity to multipath fading, jamming resistance).
- Energy density reduction (low probability of intercept)
- Fine time resolution (ranging, position determination, accurate universal timing).
- Multiple access (resource sharing, selective addressing).

One question : DSSS or FHSS ?

Near-Far Effect : Emitter B much closer to Receiver than Emitter A => Received power from B (even with orthogobal DSSS PN sequence) may mask signal from A

 \Rightarrow FHSS prefered (e.g. GSM)

- Diversity coding : spread spectrum methods

Pseudo noise sequences basic properties

Pseudo random sequence

Important to notice : Pseudo random sequence behaves like noise, although it is fully deterministic. Main properties

- \blacktriangleright Balanced code : number of $+1 \simeq$ number of $-1 \Rightarrow$ code mean $\simeq 0$
- autocorrelation : $R_{PN}(\tau) = \int_{-N_c T_c/2}^{N_c T_c/2} PN(t) PN(t-\tau) dt$ should be as close as possible to $\delta(t)$
- ► crosscorrelation: $R_{PN_iPN_j}(\tau) = \int_{-N_c T_c/2}^{N_c T_c/2} PN_i(t) PN_j(t-\tau) dt \simeq 0 \forall \tau \rightarrow$
 - 'orthogonality' between PN sequences if R_{PNiPNi}(0) = 0
 - More interesting : $R_{PN_iPN_i}(au) \simeq 0 \ \forall au$

Diversity coding : spread spectrum methods

Pseudo noise sequences basic properties

Examples

Balanced code : $PN = +1 +1 -1 +1 -1 -1 -1 \rightarrow \Sigma = 0$ Auto-correlation +1 +1 -1 +1 -1 -1 -1PN(0) =+1 +1 -1 +1 -1 -1 -1PN(0) =+1 +1 +1 +1 +1 +1 +1 $R_{PN}(0) = 7$ Cyclic auto-corr +1 -1 +1 -1 -1 -1 +1PN(1) =+1 +1 -1 +1 -1 -1 -1PN(0) =+1 +1 -1 -1 -1 +1 -1

 $R_{PN}(1) = -1$

- Diversity coding : spread spectrum methods

- Pseudo noise sequences basic properties

Examples, contd

Diversity coding : spread spectrum methods

Pseudo noise sequences basic properties

Applications of orthogonality in PN sequences

- Orthogonal codes do not 'interfer' in despreading process => mutli-user capabilities
- ► orthogonal codes often do not enjoy good auto / cross-correlation properties for $\tau \neq 0$
 - \Rightarrow
 - design short orthogonal code sequences (allow to separate users)
 - design long code sequences (with good cross and auto corr properties (good transmission properties)
 - Multiply the sequences to built a code with both properties

Diversity coding : spread spectrum methods

Pseudo noise sequences basic properties

Introduction to Digital communications -Lecture 5-

olivier.michel@grenoble-inp.fr

ENSE3 Grenoble-INP, France

2009

- Multi-carrier modulations : OFDM

Multicarrier modulations principles

Motivations

Case of a unique carrier transmission system :

- Symbol rate $R_s = \frac{1}{T_s}$
- ► Echoes, multipaths, diffusion, difraction ⇒ time leakage of a given symbol over ~ MT_s, M large
- Channel equalization complex
- ► the EYE diagram is almost closed ⇒ detection problems, decision errors...

- Multi-carrier modulations : OFDM

Multicarrier modulations principles

Pb related to unique carrier transmission : example

- Assume
 - an optical path delay $\Delta I = 100 m$, radio waves,
 - $R_s = 100 Msymbol/s$
- then delay $\tau = 300$ ns, equivalently $\tau = 30$ symbols
- Equalization FIR filter of order $N \simeq 2\tau = 60$
- Computional load = 60/T_s (C-values) = 240 multiplications/additions per symbol = 24 Gops/s !!!

- Multi-carrier modulations : OFDM

Multicarrier modulations principles

Multicarrier solution

- ► Transmit N_c in parallel (using N_c sub-channels), each with duration $T_c = N_c T_s$
- ► Each channel has carrier frequency $f_i = f_0 + \Delta f$, of width $W_c = \frac{W_s}{N_c}$ where W_s = spectral width in the mono-carrier case.
- Equalization of each sub-channel is much simpler as
 - $W_c \ll W_s \Rightarrow$ less fluctuations over W_c
 - ▶ delay is constant in time, but much mower as expressed in symbols ⇒ lower order FIR equalizer
 - ▶ If N_c >> 1, each equalizer involves only one multiplication !
- Requires $T_c >> \tau$, i.e. large N_c
- Channel Coherence width $W_b \simeq \frac{1}{\tau}$, then

$$W_c = rac{W_s}{N_c} << W_b \Rightarrow N_c >> 1$$

- Multi-carrier modulations : OFDM

Multicarrier modulations principles

Multicarrier signal expression

$$s(t) = \sum_{k} \left(\sum_{m=0}^{N_c-1} d_{m,k} \psi_m(t-kT_c) \right)$$

Major requirement : avoid inter sub-channel interferences

- \blacktriangleright separate the sub-channel spectral bandwidth \rightarrow low global spectral efficiency
- involves complex / expensive mixing an modulator devices

- Multi-carrier modulations : OFDM

OFDM solution

Allow overlapping frequency bands, but no interences, then carriers signals must verify

$$\int_0^{T_c} \psi_m(t-kT_c)\psi_{m'}^{\star}(t-kT_c)dt = \delta_{m,m'}$$

Classical simple solution :

$$\begin{cases} \psi_m(t) = \frac{1}{\sqrt{T_c}} \exp(j2\pi f_m t) & \text{si} \quad t \in [0, T_c[\\ 0 & \text{sinon} \end{cases}$$

where $f_m = f_0 + m\delta f = f_0 + m\frac{W_s}{N_c}$, f_0 being the first sub-channel central freq.

- Multi-carrier modulations : OFDM

└─ OFDM

OFDM solution, contd

as

$$\int_{kT_{c}}^{(k+1)T_{c}} \psi_{m}(t-kT_{c})\psi_{m'}^{\star}(t-kT_{c})dt$$
$$= \int_{0}^{T_{c}} \frac{1}{T_{c}} \exp(j2\pi(f_{m}-f_{m}')(t))dt$$
$$= \frac{\sin(\pi(f_{m}-f_{m}')T_{c})}{\pi(f_{m}-f_{m}')T_{c}}$$

orthogonality is met if $(f_m - f'_m)T_c = I, I \in \mathcal{Z}$, or equivalently

$$(f_m - f'_m)T'_c = (m - m')T_c \frac{W_s}{N_c} = (m - m')N_c T_s \frac{W_s}{N_c}$$

this implies

$$T_s W_s = 1$$

L_OFDM

Pulse shapes

ψ_m puse shapes and assocoated spectral representations

- Multi-carrier modulations : OFDM

CFDM implementation

OFDM implementation

Using complex orthogonal exponentials leads to

$$s(nT_c) = \sum_{k} \left(\sum_{m=0}^{N_c-1} d_{m,k} \frac{1}{\sqrt{T_c}} \exp(j2\pi f_m(n-k)T_c) \right)$$
$$= \underbrace{\sum_{k} \frac{\exp(j2\pi f_0(n-k)T_c)}{\sqrt{T_c}}}_{k} \underbrace{\left(\sum_{m=0}^{N_c-1} d_{m,k} \exp(j2\pi \frac{mn}{N_c}) \right)}_{k}$$

Delay of OFDM symbols of duration T_c

IFFT of $d_{k,m}$ sequences, of length T_c Requires $N_c \log_2 N_c$ ops (Cooley Tuckey)

- Multi-carrier modulations : OFDM

CFDM implementation

FT based OFDM modulation system

- Multi-carrier modulations : OFDM

OFDM implementation

OFDM performances

- For WGN additive channel, same perf. as single carrier modulation
- Perf. degrades for freq. selective channels : attenuated sub-channels will have high SER/BER (as high as 0.5!)
- Makes error correcting codes compulsory to reach singe carrier equiv. perf., with lower implementation cost

examples : WiFi 802.11*, WLAN, ADSL